Skip to main content

Advertisement

Log in

Science Studies, Situatedness, and Instructional Design in Science Education: A Summary and Critique of the Promise

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

This article critically examines the claim that findings from the sociology of science (or science studies) literature may be used as benchmarks in designing authentic school science curricula. First, it argues that such instructional design claims are based on erroneous understandings of the concepts of situated learning and authenticity, which result from the historically evaluative orientation of education research. Second, it considers several specific claims about the success of designed environments from the science education literature (Roth & McGinn, 1998), and contrasts those claims with an alternative way of viewing students’ work in school science. The article concludes that science education could productively consider situated actions in school science settings as interesting and authentic phenomena in their own right, apart from measuring them against professional scientific activities.

Résumé

Les techniques d’évaluation authentiques en mathématiques soulèvent des questions qui méritent l’attention des enseignants, des didacticiens et des chercheurs. La formation des enseignants dans le domaine de l’évaluation, la fiabilité et la validité d’une évaluation authentique, la variété des méthodes employées dans cette évaluation et la façon dont ces méthodes sont appliquées sont autant de questions qui émergent à mesure que de nouvelles techniques d’évaluation, autres que les traditionnels tests sur papier, sont adoptées dans les salles de classe. Au niveau secondaire, de nouvelles techniques d’évaluation émergent dans les cours de mathématiques, mais les résultats de ces expériences sont à ce jour très peu connus.

Cet article fait le point sur les résultats d’une étude qualitative portant sur cinq enseignants de mathématiques à l’école secondaire, qui tentent d’appliquer des stratégies d’évaluation authentique dans leur pratique de l’enseignement. Cette étude a vu le jour après qu’une analyse de la recherche sur l’utilisation de l’évaluation authentique en mathématiques à l’école secondaire eut mis en évidence la quasi-totale absence de détails dans la littérature au sujet des convictions, des pratiques et des préoccupations des enseignants qui se proposent de changer leur méthodes d’évaluation de façon à se conformer aux pratiques courantes en enseignement des mathématiques. Or, il est nécessaire de connaître ces détails si l’on veut permettre aux enseignants de comprendre la valeur, les avantages et les difficultés liés à l’utilisation de l’évaluation authentique dans le cadre d’un programme de mathématiques à l’école secondaire. Grâce à cette compréhension accrue, les enseignants pourront être en mesure de participer au développement de connaissances dans le domaine de l’évaluation.

Une description détaillée des expériences des enseignants de mathématiques au secondaire qui appliquent des méthodes d’évaluation authentique en classe permet de mieux cerner le processus d’évaluation lui-même. L’article décrit les techniques d’évaluation dont se servent les enseignants, les raisons pour lesquelles ils s’en servent et les façons dont ils les utilisent. Cinq cas ont été étudiés au moyen d’une approche qualitative, combinant interviews, comptes-rendus, évaluations types et observations de classe, sur une période d’un an. Grâce à l’observation et à une série d’entrevues, les enseignants sont également amenés à réfléchir sur l’efficacité des techniques choisies, les sources qui soutiennent leur démarche, les dilemmes auxquels ils sont confrontés, leurs façons de faire face à ces dilemmes et enfin les aspects qui nécessitent un travail supplémentaire. Parmi les techniques d’évaluation authentique utilisées, mentionnons le journal de bord, l’évaluation de la performance, les rubriques, les listes de contrôle, l’évaluation par les pairs et l’autoévaluation.

Plusieurs aspects se sont avérés communs aux cinq participants. Les enseignants étaient tous fermement convaincus de l’importance de l’évaluation authentique. Parmi les raisons invoquées, citons la volonté d’insérer les mathématiques dans un contexte réaliste, l’importance de développer des compétences pour ce qui est des modes de pensée et de la résolution de problèmes, la nécessité pour les étudiants de comprendre les concepts mathématiques plutôt que d’imiter les processus algorithmiques, et enfin le fait que l’acquisition de connaissances métacognitives favorise l’apprentissage. Parmi les dilemmes les plus importants aux yeux des participants, mentionnons le difficile équilibre entre les attentes traditionnelles liées au curriculum et les activités d’évaluation authentiques, l’absence de critères de correspondance entre les nouvelles techniques d’évaluation et les méthodes traditionnelles, le sentiment d’isolement ou d’aliénation par rapport aux collègues, et le manque de temps pour explorer ou mettre au point de nouvelles ressources à intégrer dans les curriculums.

En résumé, les aspects clés qui préoccupent principalement les participants sont l’importance de lier entre eux le curriculum, l’enseignement et l’évaluation; le rôle actif que jouent les administrateurs lorsqu’il s’agit de favoriser une réforme des pratiques dans le domaine de l’évaluation; et enfin l’importance du soutien que pourrait fournir une certaine culture de collaboration chez les enseignants. En conséquence, cette étude a des implications significatives pour les enseignants et pour tous ceux qui ont à cœur la croissance professionnelle et le perfectionnement pédagogique des enseignants dans le domaine de l’évaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Amerine, R., & Bilmes, J. (1988). Following instructions. Human Studies, 11, 327–339.

    Article  Google Scholar 

  • Atkinson, P., & Delamont, S. (1977). Mock-ups and cock-ups: The stage management of guided discovery in instruction. In P. Woods (Ed.). School experience: Explorations in the sociology of education (pp. 87–108). New York: St. Martin’s Press.

    Google Scholar 

  • Barab, S.A., & Hay, K.E. (2001). Doing science at the elbows of experts: Issues related to the science apprenticeship camp. Journal of Research in Science Teaching, 38(1), 70–102.

    Article  Google Scholar 

  • Bell, R., Abd-El-Khalick, F., Lederman, N.G., McComas, W.F., & Matthews, M.R. (2001). The nature of science and science education: A bibliography. Science & Education, 10(1/2), 187–204.

    Article  Google Scholar 

  • Biagioli, M. (1999). Introduction. In M. Biagioli (Ed.). The science studies reader (pp. xi–xviii). New York: Routledge.

    Google Scholar 

  • Bloor, D. (1976). Knowledge and social imagery. London: Routledge & Kegan Paul.

    Google Scholar 

  • Bloor, D. (1992). Left and right Wittgensteinians. In A. Pickering (Ed.). Science as practice and culture (pp. 266–282). Chicago: University of Chicago Press.

    Google Scholar 

  • Blumer, H. (1970). What is wrong with social theory? In W.J. Filstead (Ed.). Qualitative Methodology: Firsthand involvement with the social world (pp. 52–61). Chicago: Markam. (Original address delivered 1953)

    Google Scholar 

  • Brown, J.S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 75(1), 32–42.

    Article  Google Scholar 

  • Chalmers, A.F. (1999). What is this thing called science? (3rd ed.). Indianapolis, IN: Hackett.

    Google Scholar 

  • Clandinin, D.J., & Connelly, F.M. (2000). Narrative inquiry: Experience and story in qualitative research. San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Collins, H.M. (1985). Changing order: Replication and induction in scientific practice. London: Sage.

    Google Scholar 

  • Collins, H.M. (1988). Public experiments and displays of virtuosity: The core-set revisited. Studies of Science. 18, 725–748.

    Article  Google Scholar 

  • Collins, A., Brown, J.S., & Newman, S.E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing and mathematics. In L. Resnick (Ed.). Knowing, learning and instruction: Essays in honor of Robert Glaser (pp. 453–494). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Costa, S., Hughes, T.B., & Pinch, T. (1998). Bringing it all back home: Some implications of recent science and technology studies for the classroom science teacher. Research in Science Education, 28(1), 9–21.

    Article  Google Scholar 

  • Cremin, L.A. (1990). Popular education and its discontents. New York: Harper & Row.

    Google Scholar 

  • Cuff, E.C., Sharrock, W.W., & Francis, D.W. (1998). Perspectives in sociology (4th ed.). London: Routledge.

    Google Scholar 

  • Dijkstra, S. (1997). Theoretical foundations of instructional design: Introduction and overview. In R.D. Tennyson, F. Schott, N.M. Seel, & S. Dijkstra (Eds.). Instructional design: International perspectives (pp. 19–24). Mahwah,NJ: Lawrence Erlbaum.

    Google Scholar 

  • Driver, R. (1975). The name of the game. School Science Review, 56(197), 800–805.

    Google Scholar 

  • Driver, R. (1976). When is a stage not a stage? A critique of Piaget’s theory of cognitive development and its application to science education. Educational Research, 21(1), 54–61.

    Article  Google Scholar 

  • Driver, R. (1983). The pupil as scientist? Milton Keynes: Open University Press.

    Google Scholar 

  • Duschl, R.A. (1990). Restructuring science education: The importance of theories and their development. New York, NY: Teachers College Press.

    Google Scholar 

  • Eflin, J.T., Glennan, S., & Reisch, G. (1999). The nature of science: A perspective from the philosophy of science. Journal of Research in Science Teaching, 36(1), 107–116.

    Article  Google Scholar 

  • French, J. (1989). Accomplishing scientific instruction. In R. Millar (Ed.). Doing science: Images of science in science education (pp. 10–37). London: Falmer.

    Google Scholar 

  • Garfinkel, H. (1967). Studies in ethnomethodology. Engelwood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Garfinkel, H. (2002). Ethnomethodology’s program: Working out Durkheim ’s aphorism (A. Warfield Rawls, Ed.). Lanham, MD: Rowman & Littlefield.

  • Garfinkel, H., & Sacks, H. (1970). On formal structures of practical actions. In J.C. McKinney & E. Tiryakian (Eds.). Theoretical sociology: Perspectives and developments (pp. 160–193). New York: Appelton-Century-Crofts.

    Google Scholar 

  • Goffman, E. (1972). Relations in public. New York: Harper Row.

    Google Scholar 

  • Hughes, J., & Sharrock, W. (1997). The philosophy of social research (3rd ed.). London: Longman.

    Google Scholar 

  • Jenkins, E.W. (2000). Constructivism in school science education: Powerful model or the most dangerous intellectual tendency. Science & Education, 9, 599–610.

    Article  Google Scholar 

  • Kelly, G.J. (1997). Research traditions in comparative context: A philosophical challenge to radical constructivism. Science Education, 87(3), 355–375.

    Article  Google Scholar 

  • Kelly, G.J., Carlsen, W.S., & Cunningham, C.M. (1993). Science education in socioculturel context: Perspectives from the sociology of science. Science Education, 77(2), 207–220.

    Article  Google Scholar 

  • Kelly, G.J., Chen, C., & Crawford, T. (1998). Methodological considerations for studying science-in-the-making in educational settings. Research in Science Education, 28(1), 23–49.

    Article  Google Scholar 

  • Kragh, H. (1998). Social constructivism, the gospel of science, and the teaching of physics. Science & Education, 7, 231–243.

    Article  Google Scholar 

  • Lagemann, E.C. (1989). The plural worlds of education research. History of Education Quarterly, 29(2), 185–214.

    Article  Google Scholar 

  • Latour, B., & Woolgar, S. (1986). Laboratory life: The construction of scientific facts (2nd ed.). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Lave, J. (1990). The culture of acquisition and the practice of understanding. In J. Stigler, R. Shweder, & Herdt (Eds.). Cultural psychology: Essays on comparative human development (pp. 309–327). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Lave, J., Murtaugh, M., de la Rocha, O. (1984). The dialectic of arithmetic in grocery shopping. In B. Rogoff & J. Lave (Eds.). Everyday cognition: Its development in social context (pp. 67–94). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Lederman, M. (2004). Science is a social enterprise. The Chronicle Review, 50(36), B16.

    Google Scholar 

  • Linn, M.C., & Burbules, N.C. (1993). Construction of knowledge and group learning. In K. Tobin (Ed.). The practice of constructivism in science education (pp. 91–20). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Longino, H. (1990). Science as social knowledge: Values and objectivity in scientific inquiry. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Lynch, M. (1985). Art and artifact in laboratory science: A study of shop work and shop talk in a research laboratory. London: Routledge and Kegan Paul.

    Google Scholar 

  • Lynch, M. (1992a). Extending Wittgenstein: The pivotal move from epistemology to the sociology of science. In A. Pickering (Ed.). Science as practice and culture (pp.215–265). Chicago: University of Chicago Press.

    Google Scholar 

  • Lynch, M. (1992b). From the ‘will to theory’ to the discursive collage: A reply to Bloor’s ‘Left and right Wittgensteinians.’ In A. Pickering (Ed.). Science as practice and culture (pp. 283–300). Chicago: University of Chicago Press.

    Google Scholar 

  • Lynch, M. (1993). Scientific practice and ordinary action: Ethnomethodology and social studies of science. New York: Cambridge University Press.

    Google Scholar 

  • Lynch. M., & Macbeth, D. (1998). Demonstrating physics lessons. In J.G. Greeno & S.V. Goldman (Eds.). Thinking practices in mathematics and science learning (pp.269–297). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Macbeth, D. (1996). The discovery of situated worlds: Analytic commitments, or moral orders. Human Studies, 19, 267–287.

    Article  Google Scholar 

  • Macbeth, D. (2000). On an actual apparatus for conceptual change. Science Education, 84, 228–264.

    Article  Google Scholar 

  • Macbeth, D. (2003, April). Introductory comments on ‘putting constructivism in its place.’ Paper presented at the annual meeting of the American Educational Research Association, Chicago, IL.

    Google Scholar 

  • Matthews, M.R. (1992). Constructivism and the empiricist legacy. In Pearsall, M.K. (Ed.). Scope, sequence, and coordination of secondary school science: Vol. 2. Relevant research. Washington, DC: National Science Teachers Association

    Google Scholar 

  • Matthews, M.R. (2001, March). Thomas Kuhn ’s impact on science education: What lessons can be learned? Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, St. Louis, MO.

    Google Scholar 

  • McDermott, R., & Webber, V. (1998). When is math or science? In J.G. Greeno and S.V. Goldman (Eds.). Thinking practices in mathematics and science learning (pp.321–339). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Merton, R.K. (1973). The sociology of science: Theoretical and empirical investigations. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Mischler, E.(1979). Meaning in context: Is there any other kind. Harvard Educational Review, 49(1), 1–19.

    Article  Google Scholar 

  • Moreman, M., & Sacks, H. (1988). On ‘understanding’ in the analysis of natural conversation. In M. Moreman. Talking culture (pp. 181–186). Philadelphia, PA: University of Pennsylvania Press.

    Google Scholar 

  • Pickering, A. (Ed.). (1992). Science as practice and culture. Chicago: University of Chicago Press.

    Google Scholar 

  • Posner, G.J., Strike, K.A., Hewson, P.W., & Gertzog, W.A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227.

    Article  Google Scholar 

  • Roth, W.-M. (1996a). Art and artifact of children’s designing: A situated cognition perspective. The Journal of the Learning Sciences, 5(2), 129–166.

    Article  Google Scholar 

  • Roth, W.-M. (1996b). Knowledge diffusion in a Grade 4–5 classroom during a unit on civil engineering: An analysis of a classroom community in terms of its changing resources and practices. Cognition and Instruction, 14(2), 179–220.

    Article  Google Scholar 

  • Roth, W.-M. (1996c). Where is the context in contextual word problems? Mathematical practices and products in Grade 8 students’ answers to story problems. Cognition and Instruction, 14 (4), 487–527.

    Article  Google Scholar 

  • Roth, W.-M. (1997). Interactional structures during a Grade 4–5 open design engineering unit. Journal of Research in Science Teaching, 34(3), 273–302.

    Article  Google Scholar 

  • Roth, W.-M. (1998). Science and technology studies and science education: A natural match. Research in Science Education, 28(1), 1–7.

    Article  Google Scholar 

  • Roth, W.-M., & Bowen, G.M. (1995). Knowing and interacting: A study of culture, practices, and resources in a Grade 8 open-inquiry science classroom guided by a cognitive apprenticeship metaphor. Cognition and Instruction, 13(1), 73–128.

    Article  Google Scholar 

  • Roth, W.-M., & McGinn, M. (1997). Deinstitutionalizing school science: Implications of a strong view of situated cognition. Research in Science Education, 27(4), 497–513.

    Article  Google Scholar 

  • Roth, W.-M., & McGinn, M. (1998). Knowing, researching and reporting science education: Lessons from science and technology studies. Journal of Research in Science Teaching, 35(2), 213–235.

    Article  Google Scholar 

  • Roth, W.-M., McRobbie, C.J., Lucas, K., & Boutonne, S. (1997). The local production of order in traditional science laboratories: A phenomenological analysis. Learning and Instruction, 7(2), 107–136.

    Article  Google Scholar 

  • Sacks, H. (1992). Lectures on conversation (G. Jefferson, Ed.). Oxford: Blackwell.

  • Sacks, H., Schegloff, E.A., & Jefferson, G. (1974). A simplest systematics for the organization of turn-taking for conversation. Language, 53, 696–735.

    Article  Google Scholar 

  • Schutz, A. (1962). Collected papers 1: The problem of social reality. The Hague: Martinus Nijhoff.

    Google Scholar 

  • Sharrock, W., & Anderson, B. (1986). The ethnomethodologists. Chicester, UK: Ellis Horwood.

    Google Scholar 

  • Slezak, P. (1994a). Sociology of scientific knowledge and science education: Part 1. Science & Education, 3, 265–294.

    Article  Google Scholar 

  • Slezak, P. (1994b). Sociology of scientific knowledge and science education, Part 2: Laboratory life under the microscope. Science & Education, 3, 329–355.

    Article  Google Scholar 

  • Suchting, W.A. (1994). Notes on the cultural significance of the sciences. Science & Education, 3, 1–56.

    Article  Google Scholar 

  • Suchting, W.A. (1997). Reflections on Peter Slezak and the ‘Sociology of Scientific Knowledge.’. Science & Education, 6, 151–195.

    Article  Google Scholar 

  • Winch, P. (1995). The idea of a social science and its relation to philosophy (2nd ed.). London: Routledge.

    Google Scholar 

  • Wittgenstein, L. (1958). Philosophical investigations (G.E.M. Anscombe, Trans.). Engelwood Cliffs, NJ: Prentice Hall.

  • Woolgar, S. (1988). Science: The very idea. New York: Ellis Harwood.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherman, W. Science Studies, Situatedness, and Instructional Design in Science Education: A Summary and Critique of the Promise. Can J Sci Math Techn 4, 443–465 (2004). https://doi.org/10.1080/14926150409556627

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150409556627

Navigation